Matrix notation

A matrix with m rows and n columns is called an $m \times n$ matrix.

An $m \times 1$ matrix is a column matrix.

$$
\begin{aligned}
& \left.\left.\stackrel{1}{\left[\begin{array}{c}
x \\
x \\
\vdots \\
x
\end{array}\right]}\right\}\right\} m
\end{aligned}
$$

A $1 \times n$ matrix is a row matrix. $[\underbrace{* * * \cdots *}_{n}]\}$,
An $n \times n$ matrix is a square matrix.

$$
\underbrace{\left[\begin{array}{cccc}
* & * & \cdots & \cdots \\
x & * & & \\
\vdots & & \ddots & *
\end{array}\right]}_{n}\} n
$$

The entry in the $i^{\text {th }}$ vow and $j^{\text {th }}$ column is called the (i, j)-entry of a matrix. If A is an $m \times n$ matrix, with (i, j)-entry $a_{i j}$, we write it as

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & & \cdots & \\
a_{m 1} & a_{m 2} & & -a_{m n}
\end{array}\right]
$$

or, shorthand we simply write $A=\left[a_{i j}\right]$.

Addition and scalar multiplication

If two matrices have the same number of rows and columns we can add them by adding the corresponding entries.

So if $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$ are both $m \times n$ matrices, then

$$
A+B=\left[a_{i j}+b_{i j}\right] .
$$

Ex: $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 3 & 5\end{array}\right]+\left[\begin{array}{ccc}-1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 1 & 3 & 7\end{array}\right]$

If A is any matrix, and k is a real number, we define The scalar multiple $k A$ to be the matrix obtained by multiplying each entry of A by k.
i.e. if $A=\left[a_{i j}\right]$, then $k A=\left[k a_{i j}\right]$.

Ex: $-2\left[\begin{array}{rr}1 & 1 \\ 3 & -7\end{array}\right]=\left[\begin{array}{cc}-2 & -2 \\ -6 & 14\end{array}\right]$.

Transpose of a matrix

If A is an $m \times n$ matrix, the transpose of A, written A^{\top} is the $n \times m$ matrix whose rows are the columns of A in the same order. So the $(i, j]$-entry of A is the (j, i)-entry of A^{T}.

Ex: If $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ -1 & 2 & 4\end{array}\right]$, then $A^{\top}=\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 3 & 4\end{array}\right]$.

A matrix is symmetric if it is equal to its transpose. i.e. if $A=A^{\top}$.
(Note that symmetric matrices must be square).

Ex: $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6\end{array}\right]$ is symmetric
Practice problems: 2.1: $1 a, 2 \mathrm{gh}, 4,14$

